MPSI | Programme de colle | Semaine du 27/01

M2 · Dynamique du point

Exercices uniquement

M3 · Oscillateurs mécaniques

Cours + Exercices

	Connaître la force de rappel élastique d'un ressort (loi de Hooke).
	Connaître l'analogie électromécanique.
	Établir l'équation différentielle d'un système masse / ressort à une dimension.
	Établir l'expression de la pulsation propre ω_0 et du facteur de qualité Q d'un
	système masse / ressort amorti par frottement visqueux.
	Établir un bilan de puissance et un bilan d'énergie (mécanique). Savoir interpréter
	physiquement ces bilans.

M4 · Approche énergétique de la dynamique

Cours uniquement

	Définir le travail élémentaire, le travail sur un chemin et la puissance d'une force.
	Savoir déterminer le caractère moteur ou résistant d'une force.
	Énoncer les théorèmes de la puissance cinétique (TPC) et de l'énergie cinétique
	(TEC).
	Définir une force conservative et l'énergie potentielle associée.
	Onérateur gradient

• Connaître le lien entre le gradient et la différentielle d'une fonction f:

$$df = \overrightarrow{\operatorname{grad}}(f) \cdot \overrightarrow{dOM}$$

 Connaître l'expression de la différentielle d'une fonction à plusieurs variables :

$$df(x,y,z) = \frac{\partial f}{\partial x}dx + \frac{\partial f}{\partial y}dy + \frac{\partial f}{\partial z}dz$$

• Connaître l'expression du gradient en coordonnées cartésiennes :

$$\overrightarrow{\text{grad}} = \begin{pmatrix} \partial/\partial x \\ \partial/\partial y \\ \partial/\partial z \end{pmatrix}$$

- Savoir que $\overrightarrow{\text{grad}}(f)$ est perpendiculaire aux iso-f et orienté vers les valeurs croissantes de f.
- En déduire qualitativement, en un point du graphe de l'énergie potentielle, le sens et l'intensité de la force associée.

Etablir & Enoncer les expressions de l'énergie potentielle de pesanteur, de
l'énergie potentielle gravitationnelle et de l'énergie potentielle élastique.
Définir l'énergie mécanique.
Énoncer les théorèmes de la puissance mécanique (TPM) et de l'énergie mécanique (TEM).
Reconnaître les situations de conservation de l'énergie mécanique.
Vocabulaire : barrière de potentielle, puits de potentiel.
Définir (mathématiquement et graphiquement) un état d'équilibre, un équilibre
stable, un équilibre instable.
Vocabulaire : état lié, état de diffusion.
Définir l'approximation harmonique proche d'un minimum d'énergie potentielle.
Établir l'expression de l'énergie potentielle et établir l'équation différentielle du
mouvement proche d'un minimum d'énergie potentielle.
Définir une intégrale première du mouvement.